wz

Rezonanční motor - zdroj energie budoucnosti

© Ing. Ladislav Kopecký, 2002

Kdo by neznal elektrický rezonanční obvod, který je součástí každého rozhlasového přijímače? Elektrický rezonanční obvod, tvořený spojením cívky a kondenzátoru, může být však použit i jiným, poněkud netradičním způsobem. A výsledky mohou být přinejmenším překvapivé. Posuďte sami. Představte si, že máte střídavý motor, který má tyto vlastnosti: má konstantní příkon pro široký rozsah kmitočtů napájecího napětí (daný pouze činnými ztrátami), výkon motoru lineárně roste s kmitočtem napájecího napětí a jeho účinnost zdaleka přesahuje hranici 100%. Říkáte, že to není možné, že to odporuje přírodním zákonům? Cílem tohoto článku je ukázat, že to nejen možné je, ale že je to v principu velmi jednoduché.

Nejdříve provedeme energetickou bilanci tradičního synchronního elektromotoru s permanentními magnety v rotoru. Příkon motoru se spotřebuje na:

  1. Ztráty v železe, které tvoří převážně ztráty způsobené vířivými proudy. Ty jsou frekvenčně závislé.
  2. Ztráty v mědi, které způsobují oteplení motoru vlivem průchodu elektrického proudu statorovým vinutím. Tyto ztráty jsou v podstatě nezávislé na frekvenci napájecího napětí.
  3. Indukční ztráty (říká se jim také jalové ztráty) jsou způsobeny induktivní reaktancí cívky a jsou závislé na frekvenci (XL = L).

Výkon, který odpovídá ztrátám a) a b) se přemění na teplo. Avšak výkon, který se spotřebuje na překonání induktivní reaktance cívky, se na teplo nepřemění, ale slouží k vybuzení magnetického pole, které koná mechanickou práci. Cívka, jak známo, klade střídavému proudu odpor, kterému říkáme induktivní reaktance. Jinými slovy, k vytvoření magnetického pole, schopného konat práci je nutné vynaložit určité množství energie. A to takové množství energie, které odpovídá vykonané práci. K tomu je třeba připočíst různé druhy ztrát, takže údajně nikdy nemůžeme dosáhnout účinnosti 100%. Fyzikové tomu říkají zákon zachování energie. Platí však tento zákon vždy a za všech okolností? V tomto článku dokážeme, že tomu tak zdaleka není.

Nyní se podívejme na výkon našeho motoru. Pro jednoduchost si jeho rotor představme jako hmotný bod pohybující se po kružnici o poloměru r.

Obr. 1

Tento bod se pohybuje úhlovou rychlostí w a působí na něj síla F. Hmotný bod vykoná na dráze ds práci:

dA = F×ds = F×r×dj = F×r×w×dt

(1)

 

Okamžitý výkon je definován jako derivace práce podle času:

P = dA/dt = F×r×w = M×w

(2)

 

Všimněte si, že výkon roste lineárně s úhlovým kmitočtem w , stejně jako induktivní reaktance. Proto účinnost klasického elektromotoru nikdy nemůže překročit 100%, jak bylo výše zmíněno. Když zvýšíme otáčky (resp. frekvenci napájecího napětí), zvýší se sice výkon motoru, ale zároveň se zvýší induktivní reaktance, kterou musíme překonat zvýšením napájecího napětí. Dá se tento začarovaný kruh rozetnout? Mohu vás ujistit, že dá!

Nyní pro jednoduchost předpokládejme, že magnetický obvod máme vyrobený z materiálu s nekonečně velkým elektrickým odporem, takže nemohou vznikat vířivé proudy. (Za takový feromagnetický materiál můžeme prakticky považovat například ferit.) Potom pro příkon (přesněji řečeno zdánlivý výkon - podrobnější vysvětlení viz článek Rezonanční motor - úvod do problematiky) motoru platí:

Pp = ˝Z˝×I2 ,

(3)

kde I je efektivní hodnota proudu,

Z = Rv + jL je impedance statorové cívky.

(4)

 

Co se však stane, když do série se statorovým vinutím zařadíme kondenzátor?

Můžeme psát:

Z = Rv + jL + 1/(jC) = Rv + j(L - 1/(C))

(5)

V rezonanci se induktivní reaktance rovná kapacitní reaktanci:

L = 1/(C)

(6)

Ze vzorce pro impedanci (5) dále plyne, že v rezonanci se napětí na cívce rovná napětí na kondenzátoru s opačným znaménkem. (To znamená, že se tato dvě napětí vzájemně ruší.) Impedance se v rezonanci rovná činnému odporu:

Z = Rv

(7)

Po úpravě rovnice (6) dostaneme známý vzorec pro rezonanční kmitočet:

w2 = 1/(L×C)

frez = 1/(2p × Ö(LC))

(8)

 

Co z toho vyplývá? Pokud se nám podaří zvyšovat kmitočet napájecího napětí a zároveň udržovat LC obvod v rezonanci, příkon zůstane stejný a bude roven pouze činným ztrátám ve vinutí:

Pp = Rv× I2 ,

(9)

 

ale výkon poroste lineárně s úhlovým kmitočtem w podle vztahu (2)! Což je přesně to, co jsme tvrdili v úvodu.

To však předpokládá sériový LC obvod, tvořený vinutím statoru a vnějším kondenzátorem, udržovat neustále v rezonanci. Někdy to může být technický problém: časem může dojít vlivem různých vlivů k rozladění. Je samozřejmě možné mít stabilní oscilátor naladěný na pevný kmitočet odpovídající rezonančnímu kmitočtu LC obvodu, který čas od času znovu seřídíme. Takové řešení je sice možné, může se ukázat jako nepraktické a technicky náročné. Mnohem univerzálnější, jednodušší a elegantnější řešení je, mít takové zařízení, které bude rezonanční kmitočet udržovat samočinně. S dnešní úrovní techniky to není žádný problém. Jedno z možných řešení vidíte na obr. 2.

Obr. 2

Vinutí motoru, na obrázku nakreslené jako cívka L, kondenzátor C a řídicí a výkonová elektronika tvoří pulzně řízený oscilátor. Jeho funkce je velmi jednoduchá. Napětí kondenzátoru je vedeno přes fázový člen, který provádí fázový posun o 90° , na jeden ze vstupů komparátoru. Komparátor fázově posunuté sinusové napětí převede na napětí obdélníkového průběhu. Toto napětí je vedeno do výkonového přepínače, který budí sériový rezonanční obvod střídavým napětím obdélníkového tvaru. Průběh napětí na kondenzátoru a na výstupu elektronického přepínače vidíte na obr. 3.

Obr. 3

 

Otáčky motoru lze jednoduše řídit změnou kapacity kondenzátoru C. Pokud bychom si přáli plynulou regulaci otáček, stačilo by do obvodu statorové cívky zařadit proměnnou indukčnost (s posuvným jádrem).

 

Závěr

V tomto článku jsme si ukázali způsob, jak lze velmi jednoduše a efektivně čerpat energii z nitra hmoty. Dá se říci, že u klasického elektromotoru (i u jiných zařízení) také dochází k čerpání této energie, jenomže vybuzení energie elementárních dipólů se děje za cenu spotřeby velkého množství energie. Feromagnetikum zde slouží pouze jako médium zprostředkovávající přeměnu energie. Nám se podařilo vybudit energii obsaženou ve feromagnetickém materiálu energeticky nenáročným způsobem pomocí jednoduchého triku. Stačil k tomu obyčejný kondenzátor!

V historii existovalo mnoho zařízení, která se vymykala přírodním zákonům, které uznávala (nebo dosud uznává) oficiální věda. I v současné době čas od času proběhne tiskem zpráva o nějakém podivuhodném vynálezu nebo objevu, například o studené fúzi, autě poháněném vodou nebo stlačeným vzduchem, antigravitačním stroji a podobně, potom vše utichne a svět nerušeně jede dál ve starých kolejích. Rezonanční motor je pouze jedním z řady vynálezů, které se zdánlivě vymykají přírodním zákonům. Bude jeho osud stejný?

Příčin, proč se tato zařízení nerozšířila, je mnoho. Vedle důvodů setrvačnosti lidského myšlení a konzervativnosti lidské společnosti je to často jejich komplikovanost a technologická náročnost. Jindy pracují na principu, který je současné vědě neznámý, což u vědců pochopitelně vyvolává averzi. Významnou roli hrají i různé zájmové skupiny, které jsou díky vlastnictví zdrojů energie finančně velmi silné, a tudíž velmi mocné. Často sponzorují univerzity a výzkumné ústavy a mají značný vliv na to, jakým směrem se věda a výzkum budou ubírat.

Rezonanční motor má proti většině ostatních zařízení tohoto druhu několik nesporných výhod: je velmi dobře popsatelný standardním vědeckým aparátem, v principu je velmi jednoduchý, jeho konstrukce je relativně nenáročná, má všestrannou použitelnost a dá se předpokládat velmi vysoká účinnost. Teorie i praktické pokusy dokazují, že při použití vhodného materiálu pro magnetický obvod a při relativně vysokém pracovním kmitočtu může účinnost dosahovat několika stovek až tisíců procent. Na internetové adrese http://free-energy.webpark.cz. najdete mimo jiné i moji teorii elektrické rezonance a podrobné vysvětlení všech principů, shrnutých v tomto článku.